

Problem

- Low Dose CT has high noise, Image Quality Assessment must be performed
- Localized IQA is clinically important, but often requires reference images N2Q (Noise2Quality)
- Novel, reference-free DL method for predicting pixel-wise IQA maps
- Code: https://github.com/ayaanzhaque/Noise2Quality

Noise2Quality

SSIM Maps

• SSIM score is calculated for each pixel • High pixel intensity \rightarrow high quality

Training

- Objective: $LDCT \rightarrow SSIM$ Map
- U-Net backbone [1], MSE Loss between pred map and reference map

Schematic of the N2Q Model • Classification branch from encoder is used to predict dose level of inputted LDCT • Improves representation learning, Cross-Entropy loss for 5-class classification task

 $L(y, \hat{y}, c, \hat{c}) = L_{MSE}(\hat{y}, y) + \alpha \mathcal{L}_{CE}(\hat{c}, c)$

Noise2Quality: Non-Reference, Pixel-Wise Assessment of Low Dose CT Image Quality

Ayaan Haque^{1,2}, Adam Wang², Abdullah–Al–Zubaer Imran² ¹Saratoga High School, ²Stanford University

Details

- **Dose Simulation**

Predicted SSIM Map

Branch

N2Q produces improved SSIM maps compared to baselines

Quantitative Results

Metrics	\mathbf{AE}	RED-CNN	U-Net	U-HPF	U-Con	U-SSL	N2Q
SSIM	0.6761	0.7250	0.7448	0.7381	0.7484	0.7572	0.7664
MSE	0.1033	0.0594	0.0804	0.0979	0.0759	0.0669	0.0686
IRMSE	0.3226	0.2434	0.2830	0.3237	0.2794	0.2505	0.2437

N2Q outperforms other baseline architectures and training algorithms

Conclusion and References

• SSWL outperforms many SOTA methods, proving a task-relevant surrogate is important • Future work includes an organ-specific IQA training algorithm for true localized IQA

[1] Ronneberger, O., Fischer, P., and Brox, T., "U-net: Convolutional networks for biomedical image segmentation," in [International Conference on Medical image computing and computer-assisted intervention], 234–241, Springer (2015).

[2] Imran, A.-A.-Z., Pal, D., Patel, B., and Wang, A., "SSIQA: Multi-task learning for non-reference CT image quality assessment with self-supervised noise level prediction," in [2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI)], 1962–1965 (2021)